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Abstract

A composite analytical model to compute the deposition rates of

volatile condensible materials (VCM) on the surfaces of a multinodal enclosure
is derived using a Fick diffusion model for the VCM mass loss rates from the
source material, an exponential-Langmuir model to account for the reemission
rates of deposited VCM, and a Krook relaxation model of the Boltzmann equation

to characterize the scattering and transport properties of the VCM between

the enclosure nodes.

34



1. Introduction

The first step in accounting for the influence of filmwise con-
tamination on the sensitive surfaces of a satellite is to determine the
amount of contamination deposition on each such receptor surface as time
of flight progresses. The second step is to evaluate the thermo-optical
effects of these surface deposits. This report describes the properties
of an analytical model which has been recently developed to compute the
deposition of the volatile condensible materials (VCM) which diffuse out
of a nonmetallic source and are eventually deposited on a remote receptor

surface.

The overall model (or algorithm) is a composite of these "sub'-
models which characterize the basic processes involved in the transfer
of the VCM from its host source to the receptor. The first such process
is that of source kinetics. This involves the mechanisms by which the
VCM moves through the bulk of the host source when the ambient pressure
is sufficiently reduced and is eventually released at the source surface.
Fick's First and Second Laws for unsteady-state diffusion are employed to
model this process. The second process is that of the reemission of the
VCM from the receptors on which the adsorbed molecules reside for a short
period of time. Based upon experimental evidencel’2 this process exhibits
an exponential reemission rate for very small deposits which becomes a
constant rate independent of the deposit thickness3 where relatively
large deposits exist. This latter constant large-mass reemission rate
can be identified with the classical Langmuir evaporation mass rate for

pure substances, which is a function of the saturation vapor pressure.

The third process is the mass transfer of the VCM molecular
streams between the receptor surfaces nodes. This transport model couples
the source and reemission kinetics with the relative geometry of the

surface nodes which make up the bounding enclosure. The basis for such
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a statistical model is the Boltzmann equation for the velocity destribution
function (VDF) of the VCM streams. The general intractability of this
equation usually requires a simplification of the collision integrals of
the Boltzmann equation, which will still permit utilization of the result-
ing macroscopic flux vectors (velocity moments) for VCM vapor densities
varying from continuum viscous flow (Navier-Stokes equations) to collision-
less free molecule flow. For this algorithm, the Krook4 single-relaxation
approximation is applied using the 'two-stream Maxwellian" distribution

of Leess. The initial Maxwellian originates at the enclosure surfaces-
following source emission, receptor scatter, and receptor reemission as

a boundary condition, and then "relaxes" to the uniform Maxwellian of the
VCM vapor,which can be approximated as an ideal random gas in local equi-

1ibrium with the enclosure surfaces.

The final result is a set of ordinary second-order nonlinear
nonhomogeneous differential equations which are coupled together by
experimentally determined capture coefficients and the view factors of
the nodal surfaces. The collisional properties using the Krook approx-
imation of a symmetric collision frequency parameter restrict this model

to gas interactions between similar molecules.

2. Source Kinetics

The release of the VCM from the source material is modeled as a
surface-mediated diffﬁsion process. By this is meant that the classical
diffusion of VCM molecules through the bulk of the source matrix is
influenced by the kinetics of these molecules when they reach the surface
of the source and are released. The bulk diffusion process is character-
ized by a mass diffusion coefficient, while the surface process is
characterized by a surface residence time or, its inverse, a rate constant.
Both of these parameters are temperature~dependent and must be exper-

imentally determined. A third parameter which must also be empirically
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determined is initial quantity of "active'" (capable of release from the
source) VCM within the source. This obviously specifies the initial

uniform concentration.

The governing equation is the one-dimensional form of Fick's

Second Law for unsteady state as follows:

8c, o’c,
e 1)

where

Ci(x,t) = mass concentration of the ith active component in the

source, g-cm-3

o
n

i ith component mass diffusion coefficient, cm2 -8

X = transverse position in the source coating measured

from the free surface, cm

The one-dimensional model is sketched at the left of Figure 1.

The initial concentration of VCM in the source is considered to be uniform
so that

B, W -
i -3
Ci(o,x) = Coi =(A hs) g-cm (2)

where

Coi = initial mass concentration (density) of the ith active
-3

component in the source, g-cm
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i =
L]

i welight fraction of the ith component in the source coating

Ws = total weight of the source coating prior to outgassing, g
As = free emission surface of source, cm2
h = thickness of the source coating, cm.

The source mass loss rate is computed from Fick's First Law6

N
. _ 9 -1
Ms(t) = AS E]_ Di[b_i- Ci(x’t)] x=09 g-s

where

N = number of active components in the source.

(3)

It is convenient to define two kinetic parameters for a typical source

component.
-1
ksi = Tsi
2
. h ksi
i Di
where

(4a)

(4b)

t
Ty = surface residence time for the 1 h component on the source

surface, s

Kk th

gy = 1 component surface rate constant, st (also "jump

frequency')

=
fl

source coating thickness, cm.
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Ci is a dimensionless kinetic parameter which specifies the relative
importance of surface kinetics to diffusion kinetics for the ith com-
ponent. A small value of Ci indicates that the component has high
internal mobility;hence the outgassing is determined primarily by a first-
order surface process while a large value of Ci indicates a component

which is internally diffusion limited.

The complete solution of equation (1) for the total source mass loss rate

is given by

. N quniz Dit/h2

Ms(t) = —WS Z Z My ksi Cni e g/s (6a)

i=1 n=1

oy taanni) -7y =0 (6b)

where
- 2t
Cni p !

3
Lyt +a

ani = real and positive rates of the transcendental equation (6b).

When CiS.l, all the terms of the infinite series in equation (6a) for
n22 are negligible and o . Equation (6a) then simplifies to a

2 _
i

first-order source process.

i

. N “k_;t

Ms(t) =W 221 Hy ke » 8/s. ¢))
Exponential kinetics also exists for the general model of equation (6)
after sufficient time has elapsed for the exponential terms for n22 in
the infinite series to vanish. This "relaxation" time, t*, is physically
the time required for the mass concentration to establish a cosine-like

distribution in the source.
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The source mass loss rate after the relaxation period is simply the
asymptotic solution of equation (6a) when only the fundamental term of
the series prevails. The resulting equation is
2 2
> = -
M_(t2t") W, zi:=1 wy k. Cooe , g/s. (8)

For values of gizlo, the fundamental root, @,;» assumes a constant value

of (v2/4). This indicates a strongly diffusion-limited process, which

can also be simply modeled using exponential kinetics

M (t2t%) W (2 EN: e “oat / (9)
s s\._ 2 & Hi kDi > /8-
™ i=]
where
D, th -1
kDi = ——EEL s a diffusion rate constant for the i~ component, s .
4h

The characteristics of outgassing during the transition, or
relaxation period, when about 407 of the VCM released must be analyzed
by equations somewhat different from (6), since during the initial diffu-
sion process many terms of this series are required. This addition to
the source kinetics is currently being prepared. A summary of the surface-

mediated diffuse-source kinetics model is shown in Figure 1.

3. VCM Reemission Kinetics

VCM reemission kinetics covers the processes by which condensed
VCM desorbs, evapotates, or sublimates from the receptor surface. When
sufficient VCM has been deposited on a receptor, the mass reemission rate
is constant. If the condensed VCM is a pure substance, this constant
reemission rate is dependent upon the saturation vapor pressure through

Langmuir equation

&
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(10)

(1]
2] >
oo
e
d
o

where

M, = Langmuir bulk reemission rate, g/s

M = VCM atomic weight, AMV

T. = receptor temperature, °K

Pp = VCM saturation vapor pressure, torr

R = universal gas constant, cal/g-mole-°K.

When the receptor surface is only partially covered, the reemis-
sion rate can be related to a temperature-dependent residence time. The
rate at whieh mass leaves a receptor is then the VCM mass deposited on
the receptor divided by this residence time. Experiments7 have shown
that a small mass is adsorbed more or less permanently (in vacuum at
10-7 torr) on the receptor surface. An equation expressing the VCM

reemission rate can then be written

M_(t) = lT—e [MQ(t) - Ma] (11)
where
ﬁe(t) = reemission rate, g/s
T = temperature dependent residence time, s-1
MQ(t) = VCM mass on receptor, g
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Ma = VCM permanently adsorbed on receptor, g

8
The residence time can be shown thermodynamically to have temperature

dependence as

AEe/RT
Te = -roe (12)

where

To = approximately the lattice normal vibrational period, s
AEe = heart of deposition for the process, cal/g-mole

It is easy to see that a first-order reemission rate constant,
Ke’ similar to that in the source kinetics model, equation (7), can be

expressed as the reciprocal of this residence time.

The reemission rate is then essentially a first order process

when surface coverage is less than complete.

To account for a continuous process varying from a first-order
reemission with small deposits to the constant (zeroth order) mass loss
rate limit, when bulk VCM exists, an exponential function is suggested

as an initial approximation. The resulting equation bridging equations (1)

and (11) becomes

k
, e _
L= M li-e (Ma MQ) (13)

=,
I

where

Langmuir constant mass loss rate at surface saturation, g/s

[—F.

1

o
L]

l/Té, reemission rate constant, s
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The reemission kinetic model is summarized in Figure 2, which
illustrates the typical relationships of the parameters at specific
receptor temperature. Experimental work has shown that the constant-
bulk Langmuir reemission process does not occur until a receptor mass
deposit far in excess (>1500 X thick) of an idealized monolayer coverage
exists. The possible explanation for this is that as the VCM leaves
the receptor surface, a critical coverage exists where the remaining
material tends to draw together and form clusters or islands on the
surface. Electron photomicrographs have shown this behavior when the
average surface coverage is as much as 500 2. This is the point where
the cohesive surface forces in the VCM exceed the adsorption forces of

the VCM to the receptor surface.
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Figure 2. Receptor VCM Reemission Kinetics Model
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4, Multinode Transport Model

The transport model mathematically describes the properties
of the flow field as the VCM streams between the enclosure nodes.
In so doing, it accounts for the intermolecular scattering in the flow
field with the boundary conditions ascribed by the source and receptor
kinetic models described previously. It is derived in a sequence of
three steps. The first is an approximation for the collision integrals
in the Boltzmann transport equation which results in a solution of the
velocity distribution function (VDF) throughout the flow field. This
flow field is statistically modeled by a VDF which relaxes exponentially
by repeated binary collisions from its prescribed initial free-molecule
value at the nodal surfaces to that of an equilibrium continuum field
VDF which is an isotropic background throughout the enclosure.
Secondly, the mass flux vector which impinges on each enclosure nodal
receptor surface is obtained by integrating VDF over all velocity space
(momentum space). The result is the Maxwell integral equation for the
first velocity moment. For an N-order multinodal enclosure, this results
in a consistent set of N ordinary second-order nonlinear nonhomogeneous
differential equations which compute the net mass deposition rate on
each node as a function of the source mass loss rate, the nodal
reemission rates, and the incident flux of the uniform continuum back-
ground. Finally, the mass flux of the continuum field is itself formulated

in terms of the source mass loss and nodal reemission rates.

A. The Krook-Boltzmann Relaxation Equation

The starting point for the developing of a statistical
analysis for the behavior of gas dynamics is the well known Boltzmann

equation. In the absence of external forces on a monatomic homogeneous
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gas, this can be written9

3 - '
(g + ¥V £ (x,¥,t) = B(£E") (14)
where
f(r,v,t) = single-particle velocity distribution function
(VDF), molecules/cm3, at position r in space, with
thermal velocity v at time t.
B(f,f') = bilinear Boltzmann collision integral in functional

form.

When the collision probability between two classes (speeds) of
molecules is finite, the collision integral can be separated in two
parts.lo One part defines an integral operator for the VDF before
scattering, which accounts for the decrease in the VDF due to local
removal of molecules, while the second part is a creation collision
integral which accounts for molecules added locally te the VDF. The
so-called Krook equation4 expresses this separation by a linearized
collision parameter between two VDFs which represent the dynamic state
of the gas. This suggests a ''relaxation' type process by which each of
the VDFs approach each other symmetrically by repeated binary collisions.

The Boltzmann collision integral of equation (14) is then approximated

by
B(£f') = -K(f - £ ) (15)

where

symmetric collision - frequency parameter, s

local Maxwellian VDF

Hh
~
n ]
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The left side of equation (14) can be interpreted as represent-
ing the change in the number of molecules having a VDF of (f) as one
follows along a path in phase space through the gas. The Krook
simplification proposes that the loss and gain are both proportional to
K(i.e., the symmetry of collision), and that the after-collision
molecules (f') obey the local continuum Maxwellian VDF. This "two-
stream Maxwellian' distribution can be shownll to agree with the free-
molecule solution at the surface boundaries as well as that of continuum
flow regardless of the system geometry. A further simplification
assumed for this application is that the continuum field VDF is an
absolute Maxwellian, being uniform throughout the enclosure volume but
varying in time. This implies the absence of a mass average velocity

for this background gas.

Equation (14) combined with (15) can be integrated along a
generic direction in physical space which coincides with the velocity
vector. The result is a integrable form of the Krook equation

<a—3t + vé% +K) £ (r,v,t) = K£_(v,0) (16)

This can be readily integrated using the Laplace transform to

give the value of the VDF at a remote field p01nt (r ) from a

boundary source point (r ) in the direction (Q) of the speed (v) as
follows.

-K -K
v rk—r.) v i
fk(r,v) = fj(v,t-r/v)e I+ fo(v,t-r/v) 1-e J

(17)
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This is Krook's equation for an enclosure with a spatially
isotropic continuum VDF in a direction parallel to the velocity vector.

The situation is illustrated in Figure 3.

The translation argument of the time dependent source and field
functions indicates that the mass is moving at a finite velocity, hence
a time lag of (rk—rj)/v is indicated for the field point Ty to be
influenced by a flux propagating from source rj at speed v. If this time
lag interval is small compared to the time interval over which the
source is changing, then it becomes negligible. This is obviously the

case when photons are propagating.

It also applies in the case of satellite structures where the

distances between nodes is on the order of tens of meters while molecular
velocities are on the order of hundreds of meters per second, since a
significant change in the source mass loss rates requires at least
several minutes. Thus the final expression for Krook's equation applied

to the present systems becomes

:E(rk—r,) :E(rk-r,)
£ (rv,0) = £, (v,0)e” V4 £ (v,0) | 1-e” o ara

B. Enclosure Boundary Conditions

The boundary conditions that need to be specified are the VDF
functions at the boundary, fj, and for the continuum field, fo. In this
simplified model, it is assumed that no average mass velocity develops
for continuum flow; hence both VDFs are absolute Maxwellians. The source
Maxwellian is assumed to result from a hypothetical equilibrium VCM gas
behind the jth source node which results in a cosine distribution of

A
direction relative to the surface normal (j) with a Maxwellian speed
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distribution along each radial direction13. This further specifies free

molecule flow at the surface. Mathematically, this is expressed as

3/2 —ﬂ.vz
Bj 2
f(v,t) = n, (t)| = v'e (18)
j m
where
nj(t) = molecular number density associated with jth
surface node, molecules/cm3
4
B = — 2 and
3 nvj
8ij
Vh = mean thermal speed=|—
Tm
k = Boltzmann constant, ergs/molecule-°K
m = molecular mass, g/molecule.

In a completely analogous fashion, the continuum field

Maxwellian which is independent of spatial orientation can be expressed

3/2 —Bovz

£_(v,t) = no(t)(ér%) vle (19)
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where

no(t) = molecule number density for uniform field, molecules/cm3

o (4 /TrVOZ ).

Since the field Maxwellian is isotropic, it could be integrated

™
[]

along the complete path length to the source node; hence it can be

considered directly correlated as if it originated within the surface.

C. Mass Intensity and the Incident Nodal Mass Flux

In fluid mechanics, the principle objective is to
determine the macroscopic properties of the flow field such as the
average mass velocity, the pressure, shear stresses, and the average
energy flow. These average properties, which are functions of the
molecular velocity, are calculated at a field point by simply integrating
the VDF weighted by the property function over all velocity space.

This is formally expressed by

Uz, = [o@ £yt dy (20)
All v

where

Q(y) = molecular property (mass, momentum, energy)

dy = element volume of velocity space.

Another macroscopic average can be obtained for the transport

A
of the property (Q) in a given direction (2) across an elemental area
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normal to that direction. This is obtained by integrating the VDF,
now weighted by the property times the projected velocity component,
over the hemisphere above the area. The result is called the 'property

flux vector" and is expressed by

Tr,0) = [o@ @ @0 (21)

half v space

Thus, the mass flux (vector) is obtained from equation (21) when Q(y) is
designated the molecular mass, and the mass flux is then identified
with the first moment of the VDF.

This can be evaluated at the jth source node which will define a

"molecular mass intensity,"

which 1s analogus to the intensity in
radiation heat transfer, for Maxwellian emission from the jth node.
The total hemispherical mass loss rate into the enclosure is obtained

from the first moment of equation (18).

oo}
ﬁlj(t) =m ] —L v cos ej fj(v,t) dv dQ (22)
(2w)
where
. th 2
mj(t) = mass flux leaving j node, g/cm“-s
dQ =

sin 0,d6, d¢.
J
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Since the integrals can be separated, the integration over the
speeds yilelds

n, (t)

. b B 2

mj (t) = —f—i(——-‘ cos OdeZ, g/em -s. (23)
2V B3

(2m)

The second integration assumes azimuthal symmetry and ranges

Gj from (0) to (7/2) thus covering the hemispherical half-space over the

jth node. The result is

mn, (t)

ﬁj(t) = S R
2/n8s

R g/cmz-s. (23a)

Recalling the definition of Bj in equation (18),

iy (e) = —d 0 (e). (23b)

From equation (23) and the definition of uniform intensity,
the mass intensity is then defined as

I.(t) 1 mnj(t _ ﬁﬁ(t) g/cmz—s-sr. (24)
h|

2yTB "
T8,
J
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where

I,.(t) = constant molecular emission intensity from the jth

3

node, g/cmz—s-sr

An analogous result can be obtained for the intensity of the

field mass flux vector since it can be mathematically considered as a

h

source at jt node. The expression becomes

mn (t) n (t)
I (t) =*-;1r o - 2 | (25)
2V1TB°

where

constant molecular emission from the field, g/cmz—s—sr.

I (v)

uniform molecular density in the enclosure, g/cm3.

n (t)

The differential mass flux on the kth receptor node due to a
differential source element dA3 node can be obtained by applying equation
(22) with the VDF derived in equation (17). Symbolically, the desired

equation becomes

d¢j,k(t) = fm v fk(v,t) dv cos ek de (26)

o
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where

¢j k(t) = mass flux incident on a unit area of the kth node
’
from the jth differential source node, g/cmz-s.
de, = the solid angle subtended at a point in k by the
] th
i node.

If source and field Maxwellians defined by equations (18) and (19) are
put into equation (17a) and then the integration indicated in equation

(26) is applied, the following expression for the differential mass flux
is obtained.

dv cos 6, dQ, +-—--

® 2k
3/2 / -pjv - v (rk—rj)
3
A K 9%

3/2 2 -fls(r -r.) °
3 vk j
-—— 4+ mn TrQ v [l-e ]e dv cos 6, dg,.
o o k

It is convenient to define the following functionll

-x2- n/x -Yn/x

3
Gn(an) =3 jx e dx = <e > (28)

where

=<
=]
I

K /ﬁn (vj—rk), (n= j,o0).
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The two integrals of equation (27) can be expressed in terms of
function (28),

@© 2 k
- jv -;(rk-rj)
v3e dv = i—— G.(r) (293)
o By 3
. -%(rk—rs) o"2 1
v3 l-e e dv =73 [l—G (r)] . (29b)
[o] ﬁo °

The solid angle that the jth differential area subtends
relative to the kth pode is

6, dA
i _ cosO, da,

= (30)
] (rk - rj)2

Now, combining equations (29) and (30) into equation (27) and
integrating over a finite source node (Aj) and finite receptor node

(Ak)’ the incident mass flux becomes

G.(r) cos ej cos @

SRRV

| k
AAy Ty

> dAj dAk + ——- (31)

. 1-G (r) cos@, cosg
— +m —1—_/]' 2 ) K 4a, dA, .
Ty, - r )2 J
N k j
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A mean geometrical molecular transmittance and absorptance can
be defined analogous with the characteristics of radiation heat

transfer14 in a scattering and emitting gas as follows

G, (r) cose cos 6

1 1 k

(T.. F = — dA, d (32a)
jk jk Ak{kaj 2 ;| A

"(r -r,)

3

1 -G (r) cosg@. cos B
o <] T

(o dA, d (32b)
el m(r, - 1,)° 1 %
Ak A k 3
k|
where
Tjk = mean geometrical molecular transmittance from the jth
to the kth node
ajk = mean geometrical molecular absorptance from the jth
to the kth node
.th th
ij = diffuse angle factor from the j to the k™ node

. th
The final form for the mass flux from the Jth node incident on the k

node is then finally

%56 = Tyx Jk)mj + oy )m . (33)

(o}
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D. Multinode Mass Flux Coupling and Deposition Equations

Equation (33) accounts for the transport of molecular
Maxwellian streams between two nodes as indicated. The molecules
accounted for by this equation are a composite of two Maxwellian
classes, those identified with the source jth node hence at a temper-
ature of Tj and those of the continuum field Maxwellian at temperature
To. The flux is entirely contained within a volume bounded by the
surfaces of the nodes and all straight lines which pass through both
nodes. Clearly, this relationship must be extended to include
molecules streaming from a node with class temperatures differing
from the nodal temperature énd should encompass enough nodal surfaces

to geometrically describe the system being modeled.

With reference to Figure 4, an "enclosure" is composed
of two types of nodes. There are N nodes which form the boundary
of the enclosure. These N nodes include open areas, or holes, which
are single nodal surfaces which neither scatter (anechoic) or
reemit flux. The remainder of the nodes both scatter incident
flux and reemit from masses deposited on their surfaces. Each
of these "active" nodes is characterized by its area (4,), its
temperature (Tk), by an reemission mass rate (ﬁek) at the nodal
temperature, and by a group of N capture coefficients (“ik) which
represent the probability that molecules of a Maxwellian class at

'1‘i will reside on the node surface long enough to become accommo-
dated to the nodal temperature, Tr‘ The fraction of the incident
stream that is not accommodated is assumed to be "elastically"
scattered; hence 1t retains its class identification. Both of the
emerging streams, the scattered stream at say Ti and the reemitted

one at Tk’ are assumed to be Maxwellian streams with a cosine
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distribution relative to the surface normal.15 Free-molecule flow is
assumed to exist in the immediate vicinity of a nodal surface which
becomes 'relaxed" within a mean free path of the surface; the so-called

Knudsen layer.

The other class of nodes is the source nodes. These are
characterized again by their area (AS), by their temperature (Ts),
and by their mass loss rates (ms). These nodes may be actually
superimposed over one or more of the other nodes or they may be a
single~point jet into the enclosure. They do not participate in
the scattering and reemission processes. All of the VCM components
which are released by the same source are considered as separate VCM
sources. In the development of the flux coupling equations which

follow, a single VCM component is assumed, to simplify the notation.

With the assumption of each node either totally accommo-
dating and reemitting at its temperature or elastically scattering,
it is clear the enclosure VCM gas will be comprised of N Maxwellian
classes of molecules. Each of these will be incident and reemitted
on each node, resulting in N2 local mass fluxes. Concomitantly,
there will be N continuum field classes which are isotropic through-
out the enclosure through which each of the N2 local surface

Maxwellians is relaxing by collision.
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The mass flux coupling and mass deposition equations for the

enclosure can be derived by considering a VCM mass rate balance on a

typical nodal surface, say the kth node, as indicated in Figure 4. The

equation for the incident flux of ith class molecules on the kth receptor

is obtained by summing over all the enclosure nodes, including the kth

node, and over the continuum field fluxes:

where

1.k =Z[(Tikj Fig) Mo ¥ (@R POy (34)

$1i,k

xi,j

ikj

QAikj

4=1,N

i’k,j = 1’ --_’N

total incident mass flux at class temperature Ti on
the KD node, g/cmz-s

total mass released from the jth node at temperature
Tifg/cmz-s (this flux is identical with ﬁj(t) as

expressed in previous equations)

equilibrium field mass flux at Ti (this flux is identical

. 2
with mb(t) as expressed in previous equations), g/cm -s

mean transmittance of ith class molecules from the
kth node to the jth node

th . th
mean absorptance of i class molecules from the k

node to the jth node
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ij = diffuse angle factor from the kth node to the jth node.

In equation (34), use has been made of the reciprocity which is

applicable to the scattering process.14 This is

Ay Togr Py ™ A Taxg Fiy (35)

e = A= Tyg)

The equations for the VCM reemission mass flux can again be

identified from Figure 4 and can be expressed as

M =m0t by (36)
i’k = 1’-_-’N

where

ik = mean capture coefficient for ith class molecules

on the kth node

ok - VCM remission mass flux from the kth node at Ty,
(this is intrinsically a negative value, hence the minus
sign in equation (36)),g/cm2—s
1, 1=k
81k
- Kronecker delta function
0, i#k
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Finally, the nodal mass deposition rates are obtained by summing

the accommodated fractions of the incident fluxes with that from the source

and subtracting the reemission rate.

where

dk

dk

sk

sks

ks

a“ ¢ . L[] - L]
25 ik "1,k + Bk ~ sk Tsks st o 37)

4=1,N

mass deposition rate for all class molecules on the

kth-node, g/cmz-s

mass loss rate from the source node at Ts (this
is intrinsically a g/cmz-s negative value, hence the

minus sign).

mean. capture coefficient for sth class source molecules

at.Ts on the kth node

mean transmittance for source molecules at Ts

from the kth naode to the source node

diffuse view factor from the kth node to the

source node.

Now, equations (34) and (36) can be combined to give N2 linear

equations which couple the incident nodal fluxes with the nodal reemission

rates and the incident flux from the equilibrium field molecules. This is

expressed in matrix format as
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[Y(Tikj st, o'ik)] {d;} = [G(Tikj ij)]{t'ne}+ [H(aikj ij]{n;(:w)

where
Y] = (N2 x Nz) - matrix whose elements are functions of the
transmittances, the view factors, and the

capture coefficients

(Nz) - vector whose elements are the incident mass fluxes,

g/cmz-s

= (NZ:cN) - matrix whose elements are functions of the

i - 8
—] — —
(]

transmittances and the view factors

fluxes, g/cmz--s

H] - (Nz x N) - matrix whose elements are functions of the

absorptances and the view factors

{ ie = (N) - vector whose elements are the mass reemission
{ = (N) - vector whose elements are the incident mass

fluxes from the field distribution, g/cm’-s
Equation (38) can be combined with equation (37), thereby

expressing the fundamental mass deposition equations in a concise matrix

format:

ay (= [1- 5(0,,) Y-IG] m b+ [S(u'ik) Y‘lxﬂﬂ ;ns;B(o-skTsksFas) (39)
\
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where
m,{ = (N) - vector whose elements are the nodal mass deposition

rates, g/cmz-s

e
wn

eyl
n

(N x Nz) - matrix whose elements are the N2 capture

coefficients
{ B } = (N) - vector whose elements are the capture coefficients,
the transmittance and the view factors between

the receptor nodes and the source

(Nx N) - identity matrix

,._—
[
[
]

When free molecule flow conditions exist through the enclosure,
the (@) all vanish and the (T) become unity, and the (H) matrix vanishes.
Equation (39) reduces to

{n',d} - [ere {ae} Y {B“’sk st>}_ w0

At the other end of the collision spectrum the (a) become unity,
and the (T) vanish. Further [YJ-—[I], [G]*O » and
H(aF)]—‘[H(F)] . Then, the general deposition equation (39) becomes

o bl

This shows how the mixing by a very large collision rate (or
vanishingly small collision mean free path) substantially homogenizes all
of the nodal emission to make up the uniform equilibrium field VCM.
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E. Continuum Mass Flux

As shown in equation (39), the nodal deposition rate is linearly
dependent on the isotropic continuum flux (n) from the continuum
molecules. This continuum, by assumption, is considered to consist of
a homogeneous mixture of N vapors with uniform density and N classes of
temperatures identified with the nodal temperatures. When continuum
conditions exist within the enclosure, all the mass fluxes released from
the source and reemitted from the nodes becomes homogenized into the
continuum. Since the continuum implies a very large number of inter-
molecular and surface collisions, it is assumed that the fraction
of the total continuum vapor at a particular class temperature will

be in the same ratio as the surface area at that temperature to the

total bounding area of the enclosure. Thus, each emission and

reemission flux regardless of its temperature at release is separated into
the N continuum vapors according to this area ratio mixing rule. The
incident continuum mass flux is the same on all nodes by virtue of its

isotropy.

With these basic properties of the continuum flow field, it
is possible to independently derive the continuum nodal mass fluxes in
terms of the geometry of the enclosure, the source emission rate, the
nodal reemission rate, and the capture coefficients. This is done by
performing an instantaneous mass balance within the system enclosure.
This simply states the conservation of mass (the continuity equation)
of classical continuum fluid mechanics. It is also analogous to the
"pumping speed" expression used to evaluate vacuum pumping systems

in vacuum chamber technology.16
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Assuming that continuum flow exists in the enclosure, the
rate of change in the total ith continuum class mass in the enclosure is
equal to the rate of generation from the source and the nodal reemissions
less that adsorbed by capture at the nodal surfaces. Mathematically this is

expressed as:
A

d iy, ¢ . . 1
@) = (TT)[ASmS + Ajmej] - A—%(mNi) vy z A1 (42)
3=1,N §=1,N

where

Ni = total number if ith class continuum molecules in

the enclousre, molecules

Ai _ area of the ith node and Ti’ sz

AT - zz Aj’ the total enclosure boundary area, cm2
j=1,N

v, = total enclosure volume defined by the envelope of all

straight lines passing through two or more nodes, cm3

Vi ’\"3%?’ the average thermal speed of the 1th class of

Maxwellian molecules, cm/s

m = molecular mass, g.
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The continuum mass flux for the 1th class can be expressed as

Vi
T\ o™ (43)
o
where

Ny = incident mass flux of continuum ith class molecules on all

nodes, g/cmz-s

An ordinary linear nonhomogeneous differential equation for the
1th continuum mass flux is then obtained by introducting equation (43)
into equation (42) which results in the following expression:

i +Pm, =q [Asms + zg Aimea] (44)
where

i
Pi -(4V)2 Ao, ., s-1

o 113
AT, \
1V4 -2__-1
Q (wA)’c“‘ 8
ot

For the entire system, the N coupled continuum mass fluxes can
be conveniently expressed in matrix format by generalizing equation (44).
This set of N equations becomes:

*
me

(45)

{ﬁ;+ [P] {n} = (AS&S)[Q] + 101

where

[n] = (N) - vector whose elements are the nodal continuum mass

fluxes, g/cmz-s
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(N x N) - diagonal matrix whose elements are the Pi values
1

[p}

of equation (44), s~

(N x N) - diagonal matrix whose elements are the 9, values
-1

[Ql

of equation (44), cmfz-s

(N x N) - matrix whose elements are the nodal surface areas,

sz o

[A]

If equation (39) is differentiated with respect to time and

equation (45) is substituted in, an ordinary second order differential

equation is derived which is linearly dependent upon the coatinuum

flux vector, (ni). There are then two independent matrix equations

which are linearly dependent upon N, equation (30) and its time derivative.

If they are combined to eliminate n, a set of N ordinary nonlinear

second-order nonhomogeneous differential equations results as follows:

where

4&8{ E';] 46)

[a'] [ng] + {ad} - [B']{fn;} - [c']{ﬁe} - _-[;;S{D-

ra'3 = (s me-J(sv? }a-l

(3] = Gyt wY(er? H]-l (z-svYe
re'1= Gt g iad+(1- syt )
{p'} = (ﬁ)[s&z‘l l-a{Ai/Zj: Aioij}

(£} + (8} - [sv! we(sv! H]-l{B}.
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Equation (46) is the desired final result of the deposition
model. Its format is clarified if first-order reemission kinetics is
assured as in equation (11). Assuming that the permanently adsorbed

VCM is negligible, the mass rate elements of the deposition equation

become:
) -1
47)
{ﬁe} = -[Ke] m
where

{ m} = (N) - vector whose elements are the specific nodal mass
deposit, g/cm2

When the results of equation (47) are introduced into equation (46),
a set of N ordinary second-order nonhomogeneous differential equations

for the nodal mass deposition results:
vyfse ' - ' = | L P 1

[a'1{i] + (1 + B'K, 1] + [C'K,] [u] [ms)n 4 fE'] (48)
which is the deposition equation for very thin deposits.

Equation (48) can be readily solved for the nodal deposition {mi
using numerical computation procedures. Since the condition of free
molecule flow causes the [H] operator to vanish, the thin-deposit
equation (48) simplifies to become:

[af + (1 - s clin| = -a_[3] (49)

which is equivalent to equation (40). Equation (48) indicates the basic

"damping" influence of the continuum flow field. In order to provide
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the smooth transition from continuum flow to free molecule flow and vice
versa, it is necessary to continually evaluate the changes in the mean
geometric transmittances of each node, since these change with the local
densities due to the subsequent changes in the collision frequency and the
mean free path. Thus, the elements of the matrix operators [Y], [G]l, [H]
and the vector operator {Bf are functionally dependent on the variable
flux vectors %ﬁe}, {ﬂ}, and :¢}. This nonlinearity is introduced by the
time variations in the magnitude of the fluxes as the source is depleted
of VCM. Under free-molecule conditions, when the field is collisionless,

the equations becom linear.

Thus, the reduced equation (49) is a significant simplification
with constant linear operators and can be solved formally using matrizant

methods of matrix calculus together with Sylvestor's theorem for functions

of matrices.

A summary of the equations for the multinodal surface contam-

ination model is presented in Figure 5.
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5. Computational Procedures

To compute the mass deposition on any node with the general
conditions of the transitional Knudsen flow, equation (46) must
be solved using a digital computer program. The interrelationship
of the various equations developed in the previous sections are

indicated in the information flow diagram of Figure 6.

Figure 6 depicts three analytical procedures which must be
followed prior to exercising the deposition algorithm. These are
identified by the double-border rectangles in the upper section of
Figure 6. First, the system configuration must be divided into the
nodal surfaces which will define the system enclosure. A node is
defined as a segment of the enclosure boundary which has a uniform
temperature and a uniform mass deposit. The size of a node is
dependent only on these two criteria. A system from a small sensor
to a large orbiting satellite can be modeled. Once the geometrical
characteristics of the enclosure system have been determined, this
data is introduced into a geometrical view factor program which is
used to compute the diffuse view factors which interconnect the nodes.
Many such programs using contour integration and/or finite element
integration are available as they are most frequently employed in
problems of radiation heat transfer. The third analytical procedure

required to support the contamination algorithm is a transient thermal
analyzer which can continually compute the nodal and source temperatures
over the time period desired. If the system is in a space orbit, the
environmental ultraviolet and charged particle fluxes, ¥, should also

be computed concurrently with the orbital temperature profiles.
Another very important segment of the overall algorithm is the

experimental data base in the four areas indicated on Figure 6 by

the circles near the four corners. These test efforts provide the basic
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kinetic and transport properties of the sources and their VCM as a
function of the temperature of the nodes and of the environmental
ultraviolet and particle fluences. Significant progress has been
made on obtaining such data for the source emission kinetics, the VCM
reemission kinetics, and the capture coefficients which are the trans-

port descriptors for surface collisions.

This data is sufficient if the analysis is to cover only

the free-molecule regime. If the scattering influence for transition
and continuum flow is necessary, then two VCM molecular properties,

the molecular mass (m) and its collision diameter (&), are needed. For
simple monatomic inert gases, fairly good information already exists.
However, for the complex polymeric VCM molecules that are released by
the source materials used in space, there is virtually no data, and
extrapolation from the inert gases is poor at best. Much work is needed

in this area.

Another complication enters the computational aspects when
transition flow must be considered. This is the problem that the
differential equations become nonlinear in that the elements of the

operators [Y], [G], [Hl. and {B

This requires continual reiteration and computation of the mean free

become functions of the dependent variables.

paths and the mean geometric absorptance and transmittance. To use the

procedures as indicated on Figure 6, it is implicit that T can be

ijk
calculated independently of ij. Generally, as was shown previously,

this is not true. However, with relatively simple nonreentrant surfaces,

approximate formulas can be used based upon the techniques of radiation

heat t:ransfer.14

The solution technique is to select an initial orbital time

t(o) at which the initial nodal deposit vector is ;mo} and the initial

continuum flux vector is{no . At the injection of orbit these are both
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near zero. The temperatures are then computed. Then, for the time
interval, At, the temperatures are assumed constant so that the

values of the source and receptor kinetic parameters are constant. For
this brief period of isothermal conditions, a mass deposition vector

is calculated which is then used to determine the scattering mean
transmittance for the next At interval. Prior to each new At, the
coefficients of the dependent operators must be recomputed based

upon the conditions during the last interval. The informational flow
for this loop calculation is outlined in Figure 5 by the dotted boundary.
If scattering collisions are negligible, then this block of subprograms
is bypassed and the problem solution continues with constant matrix

coefficients.

6. Applications

To date, only the free-molecule section of the model has been
applied to practical problems. Since only a limited data base presently
exists, the results must be considered preliminary, but many of the
phenomena attributed to contamination have been at least qualitatively
verified on several complex Air Force satellites. Classification of

these programs prohibits presentation of the results.

Another relevant application was to use the model to design
the apparatus and procedures to measure the kinetic and transport
properties of the source materials. It is clear that the nodal coupling
is significant and that the configurat{on of the testing apparatus must
be simple enough to permit a closed-form solution of the basic equation
(49) in a vacuum chamber. The configuration, sketched in Figure 7,
consists of a cylindrical vacuum chamber evacuated to less than 10_7
torr with its top, bottom, and sides completely shrouded by LN2

jacketing. Four quartz crystal microbalances (QCMs)
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were positioned at distances varying from 2 inches to 6 inches in

front of a l1-inch-diameter disk specimen coated with the source material.
The source was maintained at the desired emission temperature between
40°C and 150°C while the QCMs were all collectively held from near LN2
temperatures (-170°C) to about 25°C. With this configuration the
apparatus, labeled the Molekit (Molecular Kinetics Test Facility), can
be modeled as a four-node system: the source as a l-inch-diameter

disk, the l/4-inch-diameter sensing crystal of a particular QCM as
another, the remaining QCM cases which can reflect flux, and finally

the shroud walls which were assumed to be molecularly anechoic.

When the Molekit is evacuated, free molecular conditions will
exist and equation (49), which is linear having constant coefficient

matrices, can be solved in closed form for the four-node system.
Referring again to Figure 7,  let the subscript Q identify the sensing

crystal at T,, the subscript R identify the other QCMs and the support

Q )
structure also at TQ’ the subscript S to identify the source held at

TS, and the subscript W to identify the cryoshroud walls at LN2. The

deposition rate on the QCM then becomes:

m, ‘+? szmJ. FQSO'SQmS, (3=Q,R,S,W) (50)

where

Zoq = Kq [1'(stFus * Fofwus

=+ FyoFocFey) (-90) (10 -

-FSQ (1-6QS) wQ QW(l -0 )]

[ SWFWS (-7 )(l )]
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Zow = (Agkg) [('FRSFSWFUQ + FofusFsg? 0~ 9qe? @ — o) + -

—_—+ FRSFSQ(l - chS) + FRWFWQ(I - aQw)]

Aq [1 “FoFus® - aSQ) a - “Qw)]

Zos = ~(Agkg) [FSQ + (FopFrufig
= FruFurFsp) & = 75?4 -~ oy
= FswFuqt ~ Tsw ]

Aq [l - FeFur ¥ Foufwg? -9 @ - “sw)]

ZQW=0

Equation (50)ihas assumed that all the active nodes are
reemitting with first-order processes associated with depositions of
less than about 500 . The rate constants are kQ’ kR’ and ks for
reemission from the QCM, the support structure, and the source,
respectively. kW’ the LN2 shroud reemission rate constant, is consid-
ered to be negligible; hence there is no loss of deposition. However,
it is still probable that scattering does occur from the cryogenic
shroud walls, hence the presence of the wall capture coefficient, Tow’
in equation (50).

Equation (50) computes the QCM deposition considering all the
nodes in a fully coupled system. This is the required model when the
spacing between the source disk and the QCM is less than about 1
inch. As this spacing is increased, the view factors diminish rapidly
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until, at distances greater than 2 inches, the QCM is coupled only to
the source node. With this configuration, equation (50) is dramatically
simplified to the intuitively obvious equation

m. + km

Q Q™ = -FQSGSQms° (51)

If the source mass loss rate, ﬁs’ can be expressed in an
integrable form, equation (51) can be readily integrated. Assuming first-
order source kinetics of equation (7) for a source with only one
component, the integration of equation (51) using equation (7) for the

source, rate assuming an initially clean QCM, gives

F . 0. Wk -kt k.t
s e

Equation (52) shows that the deposition rises to a peak value and

then reemits off to zero. The permanently adsorbed layer has been
assumed negligible. Figure 7b shows the results of vacuum test data on
RTV-566 adhesive compound which represents free molecular conditions.
The source was at 125°C while the QCMs and internal support structure
were at -20°C. With assumed molecular properties, the 'damping"
influence of the continuum field can be estimated. A simplified
transition model with constant attenuation was used to estimate these

effects and compare with free-molecule flow.

The transition flow deposition curve is also shown, with the
dotted line, in Figure 7b. The '"damping" effect is clear. This is a
very real condition when a small cavity surrounds the source as it
gasses. For instance, it is highly probable that the total mass loss
(% TML) obtained in SRI-JPL tests will be somewhat less than that exhibited

in a large vacuum chamber.
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